DOI: https://doi.org/10.56198/A6PFYJNJX

# Onboarding for Immersive VR: Accessibility, user experience and guidelines

Laureline Morgan-Davies, Sarune Savickaite, Neil McDonnell and David R. Simmons

University of Glasgow, Glasgow, UK sarune.savickaite@glasgow.ac.uk

Abstract. Virtual Reality (VR) is a rapidly evolving form of technology that constructs an entirely digital world, within which we can interact with three-dimensional content. This technology has the potential to enable us to rethink learning and teaching, creating new, fully immersive worlds tailored to our individual preferences. User experience of VR as facilitated by onboarding processes has been studied with regards to wider issues of accessibility such as cybersickness, perceptual differences, sensory sensitivity and neurodiversity. However, the focus has been on the efficacy of interventions rather than onboarding processes and VR user experience more generally. We will focus on supplementing existing research and suggesting guidelines for the design and implementation of onboarding processes, with an emphasis on individual user experience and population heterogeneity. With the rapid growth of VR and immersive learning applications in recent years, as well as the importance of remote learning in a post-COVID environment, personalisable and accessible applications of VR are crucial.

Keywords: Virtual Reality, Onboarding, Accessibility.

#### 1 Introduction

Previous definitions of Virtual Reality (VR) in research have been imprecise [6], [19], [20] and are difficult to identify, as both the technology and relevant research encompass a variety of applications. VR can be defined as "an artificial environment experienced through a variety of senses, which is created by a computer and accessed via a display... with input devices (e.g., controllers)" [19]. As VR technology is refined, more sophisticated hardware such as Head-Mounted Displays (HMDs) allow for more realistic interactions between users and VR [3], [10], [17]. The potential for immersive learning practices utilizing advanced VR technology is being recognized in recent literature, and it has been shown to increase user enjoyment of learning and develop skills related to visual and spatial learning, knowledge retention and psychomotor skills [1], [2], [10], [25], [28]. It may also surpass practical limits in learning, affording access to geographically

inaccessible areas such as inside the human body, and outer space [4], [10], [15].

However, alongside precise definitions of VR from which research might benefit in the creation of tailored and specific implementations, applications of VR in immersive teaching have been slow to develop. This may be due to a lack of guidelines surrounding practical implementation of educational VR, particularly in multi-user settings [3], which highlights the need for such research. Furthermore, the practical implications of employing VR in education must be considered. Potential limitations to utilizing the technology include cybersickness, excessive cognitive load, hardware limitations, stress and sensory issues

## 1.1 Accessibility

It is apparent from the literature that the experience of VR is highly personal and influenced by individual differences [9], [10]. Therefore, to effectively examine VR within the context of learning, the emphasis must be on individual user experience. Part of this consideration must be centred on accessibility, so that VR is studied and designed with a diverse population of individuals and their differences in mind. As Mott et al. [16] have correctly pointed out, VR, like any other technology, is designed with *implicit assumptions of use*. That is: an implicit assumption of the capabilities of the user. Often, minority groups might not meet these assumptions, and so run into issues of accessibility. VR is no different, and developing accessibility in VR involves intersectional, multimodal approaches to VR design and implementation, and inclusive design for cognitive, sensory and physical disabilities and differences.

Several key barriers are found to limit accessibility of VR for a diverse population with limited mobility, physical disabilities, vision impairment, hearing impairment, sensory sensitivity, proprioception issues and intellectual disabilities [5], [11], [24], [28]. Some research exists evaluating guidelines to overcome accessibility issues in VR, such as the use of zooming, inverted colours and auto-reading for people with limited mobility and low vision [7], [23] with varying degrees of success.

However, it is still valuable to focus on the barriers to accessibility of mainstream VR technology, and on solutions that could be introduced.

### 1.2 Onboarding & Guidelines

There is a lack of research surrounding individual user experience and guidelines for onboarding processes to use VR as a therapeutic and educational tool, particularly with regards to diversity of learning experience and population heterogeneity. More focus has previously been on the efficacy of interventions rather than user experience [20]. Focusing on onboarding more generally will allow us to streamline these processes, catering to a more diverse population with an emphasis on individual user experience. Some have already attempted to address the importance of onboarding processes in user experience and accessibility of VR. Škola et al. [21] have studied user experience of VR as facilitated

via onboarding processes. Their study acknowledges that accustomization to VR technology (headsets, controllers and Virtual Environment (VE)) is crucial in improving user experience and learning effects, thus exploring the benefits of effective onboarding practice. Their study also found that levels of engagement, presence and immersion improved overall user experience, lessened events of VR sickness and reduced the cognitive load of the task.

Janßen et al. [9] also highlight the importance of onboarding processes to the subjective experience of VR. They acknowledge that uncertainty regarding the experience influences how willing people are to take part, and how much they enjoy the experience. They equally emphasise how individual differences, such as age and gender, influence the effectiveness of educational VR. Harth et al. [8] also illustrate the impact prior knowledge and individual differences have on the level of immersion experienced by users in VR.

Thus, it becomes imperative to introduce onboarding guidelines in immersive VR learning, as a continuation of research such as that of Škola et al. [21] and Meyer et al. [14], who found that 'pre-training' in VR reduced cognitive load of learning tasks and increased learning efficiency.

## 2 Conclusion

Given that Virtual Reality is a relatively new research field, the formulation of guidelines around VR use has not yet been completed, especially for specific implementations of VR such as immersive learning. As a result, to maintain the rapid growth of reliable and valid research, it is important to lay out and explore guidelines with respect to the accessibility of immersive learning. Using a person-oriented approach, accounts of subjective user experience, such as perceived barriers to the access of VR, can be examined. With the current COVID-19 pandemic, technologies borne of social isolation and distancing are now used by many. Guidelines for the use of VR in socialising, connection and learning may therefore become more important than ever [16], [18].

Upon reviewing existing literature, we will present our work on how we addressed the gaps concerning appropriate guidelines around the implementation of VR learning practices. In our presentation we will present the set up and proof of concept work on the onboarding procedures for VR. In considering accessibility, neurodiversity, and the importance of multi-user labs, we will suggest an appropriate framework, in the form of onboarding processes, designed to address such questions of accessibility.

#### Acknowledgements

We wish to thank the lab manager at Mobius lab at the University of Glasgow – Dr Imants Latkovskis. We also wish to thank Edify.ac who co-created Mobius project with the

University of Glasgow for allowing us to use their standalone apps for the purposes of this research project.

## References

- Allcoat, D., & von Mühlenen, A.: Learning in virtual reality: Effects on performance, emotion and engagement. In: Research in Learning Technology, 26. (2018).
- 2. Barrett, A., Pack, A., Guo, Y., & Wang, N.: Technology acceptance model and multiuser virtual reality learning environments for Chinese language education. In: Interactive Learning Environments, 1-18. (2020).
- De Back, T. T., Tinga, A. M., & Louwerse, M. M.: Learning in immersed collaborative virtual environments: design and implementation. In: Interactive Learning Environments, 1-19. (2020).
- Freina, L., & Ott, M.: A literature review on immersive virtual reality in education: state
  of the art and perspectives. In: The INTERNATIONAL SCIENTIFIC CONFERENCE
  ELEARNING AND SOFTWARE FOR EDUCATION, ol. 1, No. 133, pp. 10-1007.
  (2015).
- Gerling, K., Dickinson, P., Hicks, K., Mason, L., Simeone, A. L., & Spiel, K.: Virtual reality games for people using wheelchairs. In: PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, pp. 1-11. (2020).
- 6. Girvan, C.: What is a virtual world? Definition and classification. In: Educational Technology Research and Development, 66(5), pp. 1087-1100. (2018).
- 7. Guo, R., Samaraweera, G., & Quarles, J.: A unique way to increase presence of mobility impaired users—Increasing confidence in balance. In: 2014 IEEE Virtual Reality (VR), pp. 77-78. IEEE. (2014).
- 8. Harth, J., Hofmann, A., Karst, M., Kempf, D., Ostertag, A., Przemus, I., & Schaefermeyer, B.: Different types of users, different types of immersion: A user study of interaction design and immersion in consumer virtual reality. In: IEEE Consumer Electronics Magazine, 7(4), pp. 36-43. (2018).
- Janßen, D., Tummel, C., Richert, A., & Isenhardt, I.: Towards measuring user experience, activation and task performance in immersive virtual learning environments for students. In: INTERNATIONAL CONFERENCE ON IMMERSIVE LEARNING, pp. 45-58. Springer, Cham. (2016).
- Jensen, L., & Konradsen, F.: A review of the use of virtual reality head-mounted displays in education and training. In: Education and Information Technologies, 23(4), pp. 1515– 1529. (2017).
- 11. Johnston, D., Egermann, H., & Kearney, G.: Measuring the behavioral response to spatial audio within a multi-modal virtual reality environment in children with autism spectrum disorder. In: Applied Sciences, 9(15), p. 3152. (2019).
- Kourtesis, P., Collina, S., Doumas, L. A., & MacPherson, S. E.: Technological competence is a pre-condition for effective implementation of virtual reality head mounted displays in human neuroscience: a technological review and meta-analysis. In: Frontiers in Human Neuroscience, 13, p. 342. (2019).

- Lindblom, A., Laine, T. H., & Rossi, H. S.: Investigating Network Performance of a Multi-user Virtual Reality Environment for Mining Education. In: 202115th INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION, INCOM. (2021).
- 14. Meyer, O. A., Omdahl, M. K., & Makransky, G.: Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. In: Computers & Education, 140, pp.103-603. (2019).
- Mikropoulos, T. A., & Natsis, A.: Educational virtual environments: A ten-year review of empirical research (1999–2009). In: Computers & education, 56(3), pp.769-780. (2011).
- 16. Mott, M., Tang, J., Kane, S., Cutrell, E., & Ringel Morris, M.: "I just went into it assuming that I wouldn't be able to have the full experience" Understanding the Accessibility of Virtual Reality for People with Limited Mobility. In: The 22<sup>nd</sup> INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY. pp. 1-13. (2020)
- 17. Ramirez, E. J.: Ecological and ethical issues in virtual reality research: A call for increased scrutiny. In: Philosophical Psychology, 32(2), pp. 211-233. (2019).
- Ravaei, S., Alonso-Martinez, J. M., Jimenez-Zayas, A., & Sendra-Portero, F.: Reflections about Learning Radiology inside the Multi-User Immersive Environment Second Life® during Confinement by Covid-19. In: Multidisciplinary Digital Publishing Institute Proceedings, 54(1), p. 9. (2020).
- 19. Savickaite, S., Millington, E., Latkovskis, I., Failes, J., Kirkwood, N., McDonell, N. Virtual Reality (VR) Multi-User Lab for Immersive Teaching [Unpublished Manuscript]. (2022).
- Schmidt, M., Glaser, N.: Investigating the usability and learner experience of a virtual reality adaptive skills intervention for adults with autism spectrum disorder. In: Educational Technology Research and Development, pp. 1-35. (2021).
- 21. Škola, F., Rizvić, S., Cozza, M., Barbieri, L., Bruno, F., Skarlatos, D., & Liarokapis, F.: Virtual Reality with 360-Video Storytelling in Cultural Heritage: Study of Presence, Engagement, and Immersion. In: Sensors, 20(20), 5851. (2020).
- Skulmowski, A., & Xu, K. M.: Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. In: Educational Psychology Review, 1-26. (2021).
- Teófilo, M., Lucena, V. F., Nascimento, J., Miyagawa, T., & Maciel, F.: Evaluating accessibility features designed for virtual reality context. In: 2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE) pp. 1-6. IEEE. (2018).
- 24. Tsikinas, S., & Xinogalos, S.: Designing effective serious games for people with intellectual disabilities. In: 2018 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON) (pp. 1896-1903). IEEE. (2018).
- Valiente, C., Swanson, J., & Eisenberg, N.: Linking Students' Emotions and Academic Achievement: When and Why Emotions Matter. In: Child Development Perspectives, 6(2), pp. 129–135. (2011).
- 26. Van der Land, S., Schouten, A. P., Feldberg, F., van Den Hooff, B., & Huysman, M.:

- Lost in space? Cognitive fit and cognitive load in 3D virtual environments. In: Computers in Human Behavior, 29(3), pp. 1054-1064. (2013).
- 27. Vasser, M., & Aru, J.: Guidelines for immersive virtual reality in psychological research. In: Current opinion in psychology, 36, pp. 71-76. (2020).
- 28. Wang, P., Wu, P., Wang, J., Chi, H. L., & Wang, X.: A critical review of the use of virtual reality in construction engineering education and training. International journal of environmental research and public health, 15(6), p. 1204. (2018).